Solar forecasting from ground-based sky images using deep learning models has shown great promise in reducing the uncertainty in solar power generation. One of the biggest challenges for training deep learning models is the availability of labeled datasets. With more and more sky image datasets open sourced in recent years, the development of accurate and reliable solar forecasting methods has seen a huge growth in potential. In this study, we explore three different training strategies for deep-learning-based solar forecasting models by leveraging three heterogeneous datasets collected around the world with drastically different climate patterns. Specifically, we compare the performance of models trained individually based on local datasets (local models) and models trained jointly based on the fusion of multiple datasets from different locations (global models), and we further examine the knowledge transfer from pre-trained solar forecasting models to a new dataset of interest (transfer learning models). The results suggest that the local models work well when deployed locally, but significant errors are observed for the scale of the prediction when applied offsite. The global model can adapt well to individual locations, while the possible increase in training efforts need to be taken into account. Pre-training models on a large and diversified source dataset and transferring to a local target dataset generally achieves superior performance over the other two training strategies. Transfer learning brings the most benefits when there are limited local data. With 80% less training data, it can achieve 1% improvement over the local baseline model trained using the entire dataset. Therefore, we call on the efforts from the solar forecasting community to contribute to a global dataset containing a massive amount of imagery and displaying diversified samples with a range of sky conditions.
translated by 谷歌翻译
将间歇性可再生能源集成到大量的电网中是具有挑战性的。旨在解决这一困难的建立良好的方法涉及即将到来的能源供应可变性以适应电网的响应。在太阳能中,可以在全天空摄像机(前方30分钟)和卫星观测(提前6小时)的不同时间尺度上预测由遮挡云引起的短期变化。在这项研究中,我们将这两种互补的观点集成到单个机器学习框架中的云覆盖物上,以改善时间内(最高60分钟)的辐照度预测。确定性和概率预测均在不同的天气条件(晴朗,多云,阴天)以及不同的输入配置(天空图像,卫星观测和/或过去的辐照度值)中进行评估。我们的结果表明,混合模型在晴朗的条件下有益于预测,并改善了长期预测。这项研究为将来的新颖方法奠定了基础,即在单个学习框架中将天空图像和卫星观测结合起来,以推动太阳现象。
translated by 谷歌翻译
汇集操作引起的翻译不变性是卷积神经网络的固有属性,这有助于诸如分类的许多计算机视觉任务。然而,为了利用旋转不变的任务,卷积架构需要特定的旋转不变层或广泛的数据增强,以从给定空间配置的不同旋转版本中学习。将图像展开到其极性坐标中提供了更明显的表示,以训练卷积架构,因为旋转不变性变为平移,因此可以从单个图像中学习给定场景的视觉上不同但其他等同的旋转版本。我们展示了两个基于视觉的太阳辐照性预测挑战(即使用地面拍摄的天空图像或卫星图像),即该预处理步骤通过标准化场景表示来显着提高预测结果,同时将培训时间减少4倍4倍。使用旋转增强数据。此外,该变换放大了围绕旋转中心的区域,导致更准确的短期辐照度预测。
translated by 谷歌翻译
太阳能的高效整合到电力组合中取决于其间歇性的可靠预期。预测由云覆盖动态产生的太阳辐照度的时间变异的有希望的方法是基于地面天空图像或卫星图像序列的分析。尽管结果令人鼓舞,但现有深度学习方法的经常性限制在于对过去观察的反应而不是积极预期未来事件的无处不在的趋势。这导致频繁的时间滞后和有限的预测突发事件的能力。为了解决这一挑战,我们介绍了Eclipse,一种时空神经网络架构,即模型从天空图像模拟云运动,不仅预测未来的辐照水平,而且还可以在本地辐照度图上提供更丰富的信息。我们表明Eclipse预期关键事件,并在产生视觉上现实期货的同时降低时间延误。
translated by 谷歌翻译
In this paper, we present a framework for learning quadruped navigation by integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework. Through both exteroceptive and proprioceptive sensing, the agent learns to modulate the intrinsic oscillator setpoints (amplitude and frequency) and coordinate rhythmic behavior among different oscillators to track velocity commands while avoiding collisions with the environment. We compare different neural network architectures (i.e. memory-free and memory-enabled) which learn implicit interoscillator couplings, as well as varying the strength of the explicit coupling weights in the oscillator dynamics equations. We train our policies in simulation and perform a sim-to-real transfer to the Unitree Go1 quadruped, where we observe robust navigation in a variety of scenarios. Our results show that both memory-enabled policy representations and explicit interoscillator couplings are beneficial for a successful sim-to-real transfer for navigation tasks. Video results can be found at https://youtu.be/O_LX1oLZOe0.
translated by 谷歌翻译
Deep spiking neural networks (SNNs) offer the promise of low-power artificial intelligence. However, training deep SNNs from scratch or converting deep artificial neural networks to SNNs without loss of performance has been a challenge. Here we propose an exact mapping from a network with Rectified Linear Units (ReLUs) to an SNN that fires exactly one spike per neuron. For our constructive proof, we assume that an arbitrary multi-layer ReLU network with or without convolutional layers, batch normalization and max pooling layers was trained to high performance on some training set. Furthermore, we assume that we have access to a representative example of input data used during training and to the exact parameters (weights and biases) of the trained ReLU network. The mapping from deep ReLU networks to SNNs causes zero percent drop in accuracy on CIFAR10, CIFAR100 and the ImageNet-like data sets Places365 and PASS. More generally our work shows that an arbitrary deep ReLU network can be replaced by an energy-efficient single-spike neural network without any loss of performance.
translated by 谷歌翻译
Recently, extensive studies on photonic reinforcement learning to accelerate the process of calculation by exploiting the physical nature of light have been conducted. Previous studies utilized quantum interference of photons to achieve collective decision-making without choice conflicts when solving the competitive multi-armed bandit problem, a fundamental example of reinforcement learning. However, the bandit problem deals with a static environment where the agent's action does not influence the reward probabilities. This study aims to extend the conventional approach to a more general multi-agent reinforcement learning targeting the grid world problem. Unlike the conventional approach, the proposed scheme deals with a dynamic environment where the reward changes because of agents' actions. A successful photonic reinforcement learning scheme requires both a photonic system that contributes to the quality of learning and a suitable algorithm. This study proposes a novel learning algorithm, discontinuous bandit Q-learning, in view of a potential photonic implementation. Here, state-action pairs in the environment are regarded as slot machines in the context of the bandit problem and an updated amount of Q-value is regarded as the reward of the bandit problem. We perform numerical simulations to validate the effectiveness of the bandit algorithm. In addition, we propose a multi-agent architecture in which agents are indirectly connected through quantum interference of light and quantum principles ensure the conflict-free property of state-action pair selections among agents. We demonstrate that multi-agent reinforcement learning can be accelerated owing to conflict avoidance among multiple agents.
translated by 谷歌翻译
Fingerprints are key tools in climate change detection and attribution (D&A) that are used to determine whether changes in observations are different from internal climate variability (detection), and whether observed changes can be assigned to specific external drivers (attribution). We propose a direct D&A approach based on supervised learning to extract fingerprints that lead to robust predictions under relevant interventions on exogenous variables, i.e., climate drivers other than the target. We employ anchor regression, a distributionally-robust statistical learning method inspired by causal inference that extrapolates well to perturbed data under the interventions considered. The residuals from the prediction achieve either uncorrelatedness or mean independence with the exogenous variables, thus guaranteeing robustness. We define D&A as a unified hypothesis testing framework that relies on the same statistical model but uses different targets and test statistics. In the experiments, we first show that the CO2 forcing can be robustly predicted from temperature spatial patterns under strong interventions on the solar forcing. Second, we illustrate attribution to the greenhouse gases and aerosols while protecting against interventions on the aerosols and CO2 forcing, respectively. Our study shows that incorporating robustness constraints against relevant interventions may significantly benefit detection and attribution of climate change.
translated by 谷歌翻译
We discuss pattern languages for closed pattern mining and learning of interval data and distributional data. We first introduce pattern languages relying on pairs of intersection-based constraints or pairs of inclusion based constraints, or both, applied to intervals. We discuss the encoding of such interval patterns as itemsets thus allowing to use closed itemsets mining and formal concept analysis programs. We experiment these languages on clustering and supervised learning tasks. Then we show how to extend the approach to address distributional data.
translated by 谷歌翻译
The long-distance agreement, evidence for syntactic structure, is increasingly used to assess the syntactic generalization of Neural Language Models. Much work has shown that transformers are capable of high accuracy in varied agreement tasks, but the mechanisms by which the models accomplish this behavior are still not well understood. To better understand transformers' internal working, this work contrasts how they handle two superficially similar but theoretically distinct agreement phenomena: subject-verb and object-past participle agreement in French. Using probing and counterfactual analysis methods, our experiments show that i) the agreement task suffers from several confounders which partially question the conclusions drawn so far and ii) transformers handle subject-verb and object-past participle agreements in a way that is consistent with their modeling in theoretical linguistics.
translated by 谷歌翻译